Mass balance of trace elements in Walker branch watershed: relation to coal-fired steam plants.

نویسندگان

  • S E Lindberg
  • A W Andren
  • R J Raridon
  • W Fulkerson
چکیده

A mass balance study of trace element flows at the TVA Allen Steam Plant at Memphis showed that most of the released Hg, some Se, and probably most Cl and Br are discharged to the atmosphere as gases. The elements As, Cd, Cu, Ga, Mo, Pb, Sb, Se, and Zn were concentrated in fly ash compared to slag and were more concentrated in the ash discharged through the stack than in that collected by the precipitator, while Al, Ba, Ca, Ce, Co, Eu, Fe, Hf, K, La, Mg, Mn, Rb, Sm, Sr, Ta, Th, and Ti showed little preferential partitioning between the slag and the collected or discharged fly ash. The elements Cr, Cs, Na, Ni, U, and V exhibited behavior intermediate between the latter two groups. This information about stack emissions of trace elements from the Allen Plant was used to estimate the likely range of air concentrations and input (dry and wet deposition) to the Walker Branch Watershed. The watershed, which is on the ERDA reservation at Oak Ridge, is within 20 km of three coal-fired steam plants, two in the TVA system and one belonging to ERDA. The estimated input values are compared to measurements of Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn in wet precipitation falling on the watershed during 1973 and 1974. Dry deposition of these elements could not be measured directly but estimates indicated that this could be of the same order of magnitude as the rainwater input. A six-month mass balance indicated that the watershed efficiently retains Pb (97-98% of the atmospheric input,) Cu (82-84%), while Cr (69%), Mn (57%), Zn (73%), and Hg (69%) are less well retained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of trace elements in coal and coal fly ash and their recovery with mineral processing practices: A review

Today coal is among the most important energy sources. In order to meet the world's energy demands, low-calorie lignite with a high ash content is generally used in the large capacity coal-fired thermal power plants. As a result of coal firing, wastes such as fly ash, slag, and flue gas are also produced. Subsequently, toxic trace elements within coal are transferred to wastes such as slag, fl...

متن کامل

Improvement of Efficiency of Coal-Fired Steam Power Plant by Reducing Heat Rejection Temperature at Condenser Using Kalina Cycle

This paper proposes an approach for improving the plant efficiency by reducing the heat rejection temperature of power cycle using Kalina Cycle System 11 (KCS11) which is integrated at the steam condenser of a 500 MWe SubC (subcritical) coal-fired power plant. It is modelled by using power plant simulation software ‘Cycle Tempo’ at different plant operating conditions. Results show t...

متن کامل

Model Identification for Industrial Coal Fired Boiler Based on Linear Parameter Varying Method

ABSTRACT: System or process identification is a mathematical modeling of systems (processes) from test or experimental data. Process models obtained from identification process can be used for process simulation, analysis, design of safety systems and control systems for the process. This paper presents the Linear Parameter Varying (LPV) modeling of 210MW Industrial Coal Fired Boiler which is c...

متن کامل

An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NOx Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions

An improved flexible solar-aided power generation system (SAPG) for enhancing both selective catalytic reduction (SCR) de-NOx efficiency and coal-based energy efficiency of coal-fired power plants is proposed. In the proposed concept, the solar energy injection point is changed for different power plant loads, bringing about different benefits for coal-fired power generation. For partial/low lo...

متن کامل

Modeling of Gas-Particle-Flow and Heat Radiation in Steam Power Plants

Fired steam generators are the dominating technology of coal combustion in power plants. This paper presents a model for pulverized coal fired steam generators in Modelica. The model components are designed as an extension of SiemensPower, a Modelica library for transient simulation of power plants. The focus is on coal combustion, gas-particle-flow and radiation heat transfer in the furnace. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 12  شماره 

صفحات  -

تاریخ انتشار 1975